Série Épreuve **Spécialité**

BACCALAURÉAT TECHNOLOGIQUE SCIENCES ET TECHNOLOGIES INDUSTRIELLES SCIENCES PHYSIQUES ET PHYSIQUE APPLIQUÉE **GÉNIE MÉCANIQUE**

3PYGMME1 Session 2003 Durée: 2 heures

Coef.: 5

Il est rappelé aux candidats que la qualité et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

> L'usage des calculatrices est autorisé pour l'épreuve. Circulaire n°99-186 du 16/11/1999

Le sujet comporte trois parties A. B et C pouvant être traitées indépendamment les unes des autres.

PRÉSENTATION

Depuis plusieurs années, la qualité de l'air n'a cessé de se dégrader, principalement en milieu urbain.

L'industrie automobile a dû s'adapter à ces nouvelles contraintes

en promouvant le véhicule électrique et plus récemment en développant la gamme des scooters électriques.

Page 1 sur 5 3PYGMME1

PARTIE A: ÉTUDE ÉNERGÉTIQUE: (3 points)

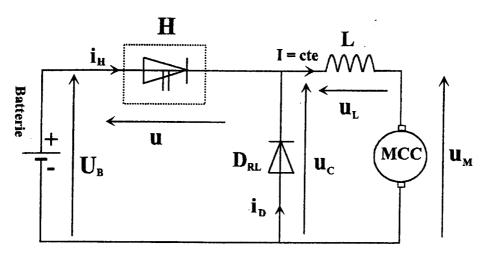
Pour permettre au scooter de fonctionner dans de bonnes conditions, le moteur devra fournir, en charge nominale, une puissance utile minimale de 1 000 W à 4 300 tr/min sur terrain plat.

On se propose de vérifier cette exigence et de calculer l'autonomie du

- A. 1) A la vitesse de 45 km. h⁻¹ sur terrain plat, l'intensité F de la force motrice est égale à 80 N Calculer la puissance mécanique $\rm P_{\scriptscriptstyle u}$ nécessaire à la propulsion du scooter. Montrer que ce résultat est conforme à l'exigence du constructeur.
- A.2) La capacité Q de la batterie est égale à 100 A.h (elle peut fournir 100 A pendant 1 heure ou 50 A pendant 2 heures). A la vitesse V_{sc} = 45 km.h⁻¹ sur terrain plat, on relève un courant absorbé par le moteur d'entraînement de 100 A. Quelle est alors l'autonomie kilométrique du scooter (distance maximale possible) à cette vitesse ?
- A.3) La recharge de la batterie dure 2 heures. Pendant cette opération, la batterie est alimentée sous une tension de 21 V et est traversée par un courant d'intensité 50 A. Calculer l'énergie fournie par le chargeur (en kW.h).

PARTIE B : ÉTUDE DU SYSTEME MOTORISÉ: (6 points)

Le moteur d'entraînement utilisé est un moteur à courant continu à excitation indépendante et à flux constant. Il possède les caractéristiques nominales suivantes :


> Tension d'alimentation de l'induit: $U_{\rm N}=18~{\rm V}$; Intensité du courant dans l'induit: $I_{\rm N}=100~{\rm A}$; Fréquence de rotation : $n_{\rm N}=4300~{\rm tr.min}^{-1}$ Résistance de l'induit: R = 5 m Ω .

- B. 1) Représenter le schéma du modèle électrique équivalent de l'induit du moteur.
- B.2) Calculer la force électromotrice induite nominale E,.
- B.3) Montrer que la force électromotrice E (en volt) peut s'écrire E = k Ω où Ω désigne la vitesse angulaire du moteur exprimée en radians par seconde.
- B.4) Calculer, pour le fonctionnement nominal :

 - B.4.1) La puissance électrique absorbée P_a par l'induit; B.4.2) La puissance perdue par effet joule P_j par l'induit,
- B.4.3) La puissance électromagnétique P_{em};
 B.4.4) La puissance utile P_u sachant que l'ensemble des pertes ques et mécaniques vaut 125 W; magnétiques et mécaniques
- B.4.5) Le rendement du moteur sachant que le circuit inducteur absorbe une puissance de 90 W.

PARTIE C : ÉTUDE DU VARIATEUR ÉLECTRONIQUE DE VITESSE: (11 points)

Pour l'alimentation de l'induit du moteur à courant continu (MCC), la structure du variateur retenue var le constructeur est un <u>hacheur série</u> représenté ci-dessous :

Celui-ci est constitué:

- d'un interrupteur électronique H commandé de la manière suivante

O H fermé de $0\,\grave{a}\,\alpha T$

O H ouvert de αT à T Avec α : rapport cyclique variable (0 $\leq \alpha$ $\leq 1)$ et T : période de fonctionnement du hacheur ;

- d'une batterie d'accumulateurs de tension nominale U = 18 V;
- d'une diode de roue libre $D_{\scriptscriptstyle RL}$ supposée idéale;
- d'une bobine de lissage d'inductance L suffisamment élevée pour obtenir un courant
- i = I = constant.
- C.1) Quel type de conversion d'énergie un hacheur série réalise-t-il ?
- C.2) On se propose de visualiser les variations de la tension $u_{\mbox{\tiny c}}(t)$ et de l'intensité du courant $i_{\mbox{\tiny H}}(t)$ Compléter la figure 1 du document réponse en précisant les appareils et les branchements nécessaires pour visualiser ces deux grandeurs.
- C.3) Le convertisseur fonctionne à une fréquence de 20 kHz avec un rapport cyclique α = 0,4. Calculer la période T de fonctionnement du hacheur.
- C.4) Tracer sur la figure 2 du document réponse l'allure de $u_{\alpha}(t)$ pour $\alpha=0,4$. On prend 1 carreau pour 2 V et 1 carreau pour 10 μ s. Préciser les intervalles de temps pendant lesquels l'interrupteur H est fermé et ouvert.

3PYGMME1

- C.5) Calcul et mesure de valeur moyenne.
 - C.5. 1) En utilisant la méthode des aires, montrer que la valeur moyenne < u_{c} > s'écrit:

$$< u_{c} > = \alpha U_{B}$$

- C.5.2) Calculer numériquement $< u_c > quand \alpha = 0,4$ et $U_R = 18$ V.
- C.5.3) Avec quel type d'appareil de mesure et quelle position du commutateur (alternatif ou continu) peut-on mesurer $< u_a > ?$
- C.6) Étude de la commande de vitesse.

En négligeant la résistance d'induit, la tension aux bornes du moteur s'écrit

$$< u_{M} > = 0,004n$$

Dans cette formule n désigne la fréquence de rotation du moteur exprimée en $\operatorname{tr.min}^{\text{-1}}$

- C.6.1) Justifier l'égalité < $u_{_{M}}$ > = < $u_{_{c}}$ >. En déduire l'expression de n en fonction de $\alpha.$
- C.6.2) La vitesse linéaire du scooter (exprimé en $\text{km.h}^{\text{-1}}$) peut s'écrire

$$V_{sc} = 0,01 n$$
.

En déduire l'expression de V_{sc} en fonction de α .

C.6.3) Calculer la valeur maximale de la vitesse du scooter.

DOCUMENT REPONSE A RENDRE AVEC LA COPIE

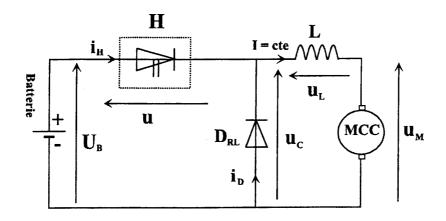


Figure 1

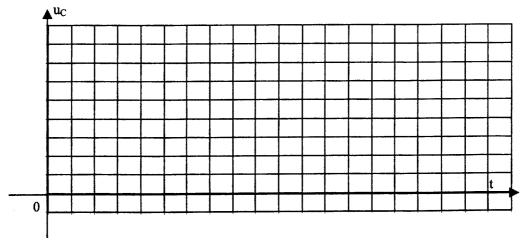


Figure 2

1014 4 31 -	
Etat de	,
1	,
112 - 4 TT	
l'interrupteur H	,
i interior aprova	