Problème 1 : ELECTRICITE (13 points)

Un moteur asynchrone triphasé tétrapolaire est alimenté par une ligne triphasée de fréquence 50 Hz et dont la valeur efficace de la tension composée vaut U=400~V. La résistance mesurée entre deux bornes de l'enroulement statorique vaut $R_s=1,2~\Omega$. Les pertes mécaniques du moteur, supposées constantes, valent $P_m=185~W$. On a réalisé les essais suivants :

- Un essai à vide a donné les résultats suivants :
 - puissance absorbée $P_0 = 450 \text{ W}$.
 - intensité efficace du courant en ligne $I_0 = 7.0 \text{ A}$.
- Un essai en charge correspondant au régime nominal a donné les résultats suivants:
 - Puissance active P = 7.3 kW
 - Puissance réactive Q = 5,37 kvar
 - Vitesse de rotation du moteur n = 1440 tr/min.

1.1. Essai du moteur en fonctionnement à vide:

- 1.1.1. Donner le nombre de pôles du moteur.
- 1.1.2. Déterminer la vitesse de synchronisme ne
- 1.1.3. Calculer les pertes par effet Joule dans cet essai.
- 1.1.4. Calculer les pertes dans le fer du stator.

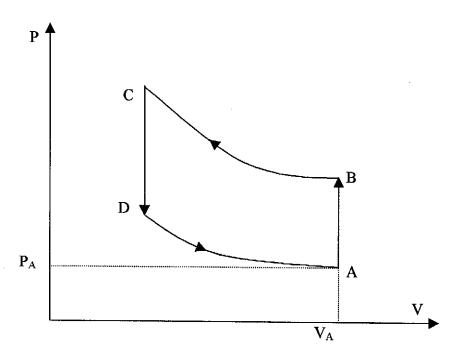
1.2. Etude du moteur en régime nominal:

On considère que les pertes dans le fer du stator, pour cet essai, valent 177 W.

Pour ce régime calculer :

- 1.2.1. le facteur de puissance cos φ;
- 1.2.2. l'intensité efficace du courant en ligne :
- 1.2.3 la puissance transmise au rotor Ptr:
- 1.2.4. le glissement g du moteur;
- 1.2.5. la puissance dissipée par effet joule dans le rotor P_{ir};
- 1.2.6. le moment du couple électromagnétique C_e;
- 1.2.7. le moment du couple utile C_u.

1.3. Etude du moteur entraînant à une charge constante :


Le moteur entraı̂ne une machine dont le moment du couple reste constant et a pour valeur $C_r = 30 \text{ N.m.}$

On admet que dans sa partie utile, la caractéristique mécanique $C_u = f(n)$ du moteur, est une droite passant par les points suivants : point A ($C_u = 42 \text{ N.m}$; n = 1440 tr/min) point B ($C_u = 0 \text{ N.m}$; n = 1500 tr/min)

- 1.3.1. Tracer sur le document réponse les caractéristiques mécaniques du moteur et de la charge.
- 1.3.2. En déduire la vitesse de rotation de l'ensemble.

Problème 2: THERMODYNAMIQUE (7 points)

Soit une pompe à chaleur dans laquelle de l'air (assimilable à un gaz parfait) décrit le cycle ABCDA constitué par les transformations suivantes (le point A étant défini par la pression P_A ; le volume V_A et la température T_A):

- A B : chauffage isochore jusqu'à la température T_B.
- B C : compression isotherme, le volume en C étant V_C.
- CD: refroidissement isochore jusqu'à la température TA.
- DA: détente isotherme.

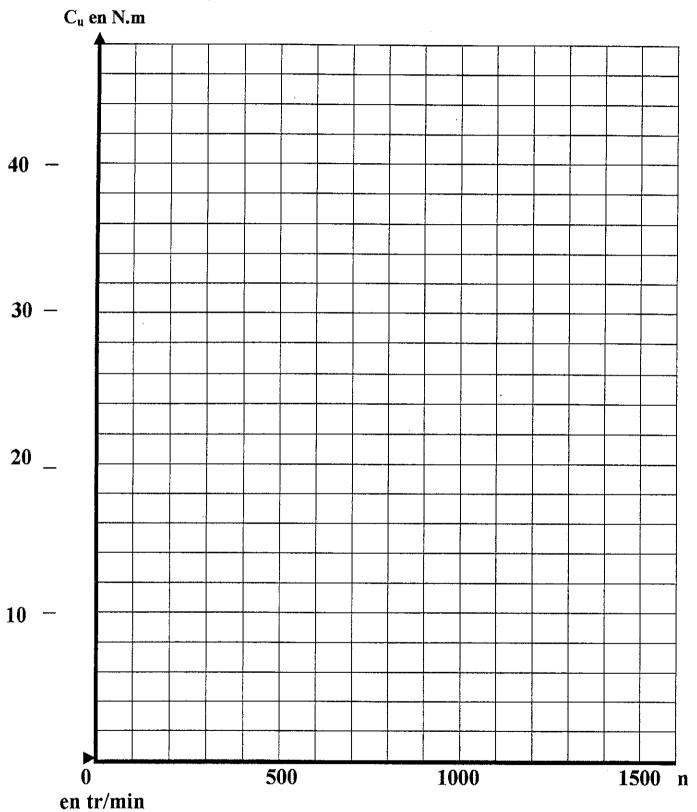
On donne : $P_A = 1.0 \times 10^5$ Pa ; $V_A = 1.40$ m³ ; $T_A = 263$ K ; $T_B = 293$ K ; $V_C = 0.38$ m³. Nombre de moles d'air mises en jeu : n = 64 moles Constante des gaz parfaits R = 8.31 J. mol⁻¹. K⁻¹. La capacité thermique molaire à volume constant de l'air, C_v , est constante et vaut 20.8 J.mol⁻¹.K⁻¹.

Formulaire:

Transformation isotherme : $Q_{1\rightarrow 2}=n~R~T~ln \frac{V_2}{V_1}$;

Transformation isochore: $Q_{1\rightarrow 2} = n C_v (T_2 - T_1)$.

- 2.1. Calculer les quantités de chaleur Q_{AB} ; Q_{BC} ; Q_{CD} et Q_{DA} échangées par l'air au cours des transformations AB; BC; CD et DA. Vérifier que Q_{AB} = Q_{CD} .
- 2.2.1. Calculer les travaux W_{AB} ; W_{BC} ; W_{CD} et W_{DA} échangés par l'air au cours des quatre transformations du cycle.
- 2.2.2. Calculer le travail total W_{cycle} échangé par l'air au cours du cycle. Quel est son signe? En déduire le sens de l'échange du travail entre l'air et le milieu extérieur.


2.3.1. L'efficacité	e de la pompe	à chaleur s'exprime	e en fonction	de la grand	leur Q _{BC} et
		e en fonction des te		•	X = -

2.3.2. Calculer la valeur numérique de e avec les données précédentes.

Œ
=
Œ
$\overline{\mathbf{c}}$
٠Ē
_
_
ш
-
œ
4-1
-
-

Série* :	Numérotez chaque
	page (dans le cadre en bas de la page) et
	placez les feuilles
	intercalaires dans le bon sens.
	Série* :

DOCUMENT REPONSE

