Exercise $\mathrm{N}^{\circ} 1$

Three voltmeters $\mathrm{V}, \mathrm{V}_{1}$ and V_{2} are connected as shown :

a) Give the relationship between $\mathrm{V}, \mathrm{V}_{1}$ and V_{2}.

According to $\mathrm{KVLV}=\mathrm{V}_{1}+\mathrm{V}_{2}$.
b) Complete the table of voltmeter (in volts) which were obtained with 3 different batteries.

$\mathrm{V}(\mathrm{V})$	$\mathrm{V}_{1}(\mathrm{~V})$	$\mathrm{V}_{2}(\mathrm{~V})$
18	12	6
6	4	2
12	8	4

Exercise $\mathrm{N}^{\circ} \mathbf{2}$

The following circuit is given :

a) Mark all voltage drops on the circuit.
b) $\mathrm{V}_{\mathrm{AD}}=10 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{BD}}=4 \mathrm{~V}$. Calculate V_{AB}.

We apply KVL to ABDA : $-\mathrm{V}_{\mathrm{AB}}-\mathrm{V}_{\mathrm{BD}}+\mathrm{V}_{\mathrm{AD}}=0$.
So $\mathrm{V}_{\mathrm{AB}}=\mathrm{V}_{\mathrm{AD}}-\mathrm{V}_{\mathrm{BD}}=6 \mathrm{~V}$.
c) Calculate V_{CB} knowing that $\mathrm{V}_{\mathrm{CD}}=1 \mathrm{~V}$.

We apply KVL to BCDB: $V_{C B}-V_{C D}+V_{B D}=0$.
So $V_{C B}=V_{C D}-V_{B D}=-3 V$.
d) Calculate V_{Ac}.

We apply KVL to $A C B A$: $-V_{A C}-V_{C B}+V_{A B}=0$.
So $\mathrm{V}_{\mathrm{AC}}=9 \mathrm{~V}$.

Additional exercise on KVL

a) $I_{3}=12,5 \mathrm{~mA}$ and $I_{2}=-25 \mathrm{~mA}$. Calculate I_{1}.

We apply KCL : $I_{1}+I_{2}=I_{3}$
So $I_{1}=I_{3}-I_{2}=37.5 \mathrm{~mA}$.
b) Mark V_{BC} et V_{AB} and V_{BD}.

See the circuit.
c) $\mathrm{E}_{1}=20 \mathrm{~V}, \mathrm{E}_{2}=12 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{BD}}=12,5 \mathrm{~V}$. Calculate V_{BC} and V_{AB}.

We apply KVL to BDCB: $-\mathrm{V}_{\mathrm{BD}}+\mathrm{E}_{2}+\mathrm{V}_{\mathrm{BC}}=0$
$\mathrm{V}_{\mathrm{BC}}=\mathrm{V}_{\mathrm{BD}}-\mathrm{E}_{2}=0,5 \mathrm{~V}$.
We apply KVL to ABDA: - $\mathrm{V}_{\mathrm{AB}}-\mathrm{V}_{\mathrm{BD}}+\mathrm{E}_{1}=0$
$\mathrm{V}_{\mathrm{AB}}=\mathrm{E}_{1}-\mathrm{V}_{\mathrm{BD}}=20-12,5=7,5 \mathrm{~V}$.
d) Draw a voltmeter to measure E_{2}.

See the circuit.

