PART 1: CHARGE AND DISCHARGE OF CAPACITOR ACROSS R

The following circuit is given:

E is a constant voltage source and R = 12 $M\Omega$

By using switch S, the capacitor may be isolated from the voltage source and then discharged. Readings of the potential difference u_{C} across the capacitor are taken at regular intervals as the capacitor is charged and then discharged.

When the switch S is on the **position 1** the following graph is obtained:

- a) Give the unit of capacitance C.
- b) State whether the graph represents the charge or the discharge of the capacitor.
- c) Is it a constant voltage charge across R or a constant current charge?
- d) From the graph, deduce the value of voltage E.
- e) Express time constant τ in terms of R and C.
- f) Give the % of charge after time $t = \tau$ and deduce the value of capacitance C.
- g) What is the time taken by the capacitor to be charged at 95 %?

Oral work on capacitors and astable circuit

h) Apply KVL to show that the differential equation for the charge circuit is :

$$RC \frac{du_C}{dt} + u_C = E$$

i) We can show that the solution of the differential equation is :

$$u_C = E(1 - e^{-\frac{t}{\tau}})$$

 $u_{\rm C}=E(1-e^{-\frac{t}{\tau}})$ Give the value of u_C when t tends to infinity and what is the mathematical name for E on the charge graph.

j) Sketch the graph of uC against time when the switch is on position 2.

PART 2: ASTABLE CIRCUIT

The following circuit is given: R

The <u>op amp</u> is supposed to be <u>ideal</u> and <u>functioning non-linearly</u>. Voltage u_S is a periodic signal of period T.

- a) What are the names of E⁻, E⁺ and S?
- b) Give the 2 possible values of u_S.
- c) Apply the voltage divider formula to show that V_{E+} can take 2 values \pm 7.5 V.
- d) Express ϵ in terms of V_{E+} and u_C .
- e) Give the value of us if $V_{E+} > u_C$.
- f) Give the value of us if $V_{E+} < u_C$.

The waveforms of u_s and u_c are given.

- g) $u_S = + V_{SAT}$ for 0 < t < T/2. What happens to the capacitor during this time?
- h) What is the maximum value of voltage u_C?
- i) At time t = T/2, $\epsilon = 0$. What happens to voltage u_S ?
- j) $u_S = -V_{SAT}$ for T/2 < t < T. What happens to the capacitor during this time?
- k) What is the minimum value of voltage u_C?
- I) Give an application for the circuit.