PART 1 : CHARGE AND DISCHARGE OF CAPACITOR ACROSS R
The following circuit is given:

E is a constant voltage source and $R=12 \mathrm{M} \Omega$
By using switch S, the capacitor may be isolated from the voltage source and then discharged. Readings of the potential difference u_{c} across the capacitor are taken at regular intervals as the capacitor is charged and then discharged.
When the switch S is on the position 1 the following graph is obtained:

t (s)
a) Give the unit of capacitance C.
b) State whether the graph represents the charge or the discharge of the capacitor.
c) Is it a constant voltage charge across R or a constant current charge ?
d) From the graph, deduce the value of voltage E.
e) Express time constant τ in terms of R and C .
f) Give the \% of charge after time $t=\tau$ and deduce the value of capacitance C.
g) What is the time taken by the capacitor to be charged at 95% ?
h) Apply KVL to show that the differential equation for the charge circuit is :

$$
\mathrm{RC} \frac{d u_{C}}{d t}+\mathrm{u}_{\mathrm{C}}=\mathrm{E}
$$

i) We can show that the solution of the differential equation is :

$$
u_{C}=E\left(1-e^{-\frac{t}{\tau}}\right)
$$

Give the value of u_{C} when t tends to infinity and what is the mathematical name for E on the charge graph.
j) Sketch the graph of $u C$ against time when the switch is on position 2.

PART 2 : ASTABLE CIRCUIT

The following circuit is given : $\quad \mathrm{R}$

The op amp is supposed to be ideal and functioning non-linearly. Voltage u_{s} is a periodic signal of period T.
a) What are the names of $\mathrm{E}^{-}, \mathrm{E}^{+}$and S ?
b) Give the 2 possible values of us.
c) Apply the voltage divider formula to show that $\mathrm{V}_{\mathrm{E}+}$ can take 2 values $\pm 7.5 \mathrm{~V}$.
d) Express ε in terms of $\mathrm{V}_{\mathrm{E}_{+}}$and u_{C}.
e) Give the value of us if $\mathrm{V}_{\mathrm{E}_{+}}>\mathrm{u}_{\mathrm{C}}$.
f) Give the value of us if $V_{E_{+}}<u_{C}$.

The waveforms of u_{s} and u_{c} are given.

Oral work on capacitors and astable circuit
g) $u_{S}=+V_{S A T}$ for $0<t<T / 2$. What happens to the capacitor during this time?
h) What is the maximum value of voltage u_{c} ?
i) At time $t=T / 2, \varepsilon=0$. What happens to voltage u_{s} ?
j) $\mathrm{u}_{\mathrm{S}}=-\mathrm{V}_{\mathrm{SAT}}$ for $\mathrm{T} / 2<\mathrm{t}<\mathrm{T}$. What happens to the capacitor during this time?
k) What is the minimum value of voltage u_{c} ?
I) Give an application for the circuit.

