ORAL WORK ON TEMPERATURE SENSORS

EXERCISE N°1

Fill in the blank:

Temperature sensors convert	into an	
quantity. The 2 temperature sensors studied a		
sensor. The first sensor converts temperature	e into a wheras the	
second sensor converts temperature into a		

EXERCISE N°2

While calibrating a temperature sensor the following measurement table is obtained.

Temperature	20	30	40	50	60	70	80	90	100
θ (\mathcal{C})									
Voltage Us	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1
(V)									

- a) Draw voltage Us against temperature θ graph.
- b) Is the temperature sensor a linear one or a non-linear one? Why?
- c) Give the value of θ when Us = 0.85 V.
- d) Give the name of a temperature sensor which gives the same graph.
- e) The temperature sensor is an IC. What does it need to function?

EXERCISE N°3

We are going to study a non-linear temperature sensor: the NTC type thermistor The resistance R of the sensor is related to the temperature θ by the following equation: R = $\frac{900000}{\theta^2}$ with θ between 40°C and100°C

- a) Sketch the graph of R against θ .
- b) The NTC sensor is a non-linear one. Why?
- c) Calculate the tempearature θ if resistance R = 200 Ω .